
A Memory Model for Scientific Algorithms on Graphics

Processors

Naga K. Govindaraju ∗ † Scott Larsen ∗ Jim Gray † Dinesh Manocha ∗

{naga,larsene,dm}@cs.unc.edu, Jim.Gray@microsoft.com

Abstract

We present a memory model to analyze and improve the
performance of scientific algorithms on graphics process-
ing units (GPUs). Our memory model is based on tex-
turing hardware, which uses a 2D block-based array rep-
resentation to perform the underlying computations. We
incorporate many characteristics of GPU architectures in-
cluding smaller cache sizes, 2D block representations, and
use the 3C’s model to analyze the cache misses. More-
over, we present techniques to improve the performance of
nested loops on GPUs. In order to demonstrate the ef-
fectiveness of our model, we highlight its performance on
three memory-intensive scientific applications – sorting, fast
Fourier transform and dense matrix-multiplication. In prac-
tice, our cache-efficient algorithms for these applications are
able to achieve memory throughput of 30–50 GB/s on a
NVIDIA 7900 GTX GPU. We also compare our results with
prior GPU-based and CPU-based implementations on high-
end processors. In practice, we are able to achieve 2–5×
performance improvement.

Keywords: Memory model, graphics processors, scientific
algorithms.

1 Introduction

The programmable graphics processing units (GPUs) have
been shown useful for many applications beyond graphics.
These include scientific, geometric and database computa-
tions. The GPUs are programmable parallel architectures
designed for real-time rasterization of geometric primitives.
Current GPUs can offer 10× higher main memory band-
width and use data parallelism to achieve up to 10× more
operations per second than current CPUs. Furthermore, GPU

∗UNC Chapel Hill
†Microsoft Corporation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SC2006 November 2006, Tampa, Florida, USA
0-7695-2700-0/06 $20.00 c©2006 IEEE

performance has improved faster than Moore’s Law over the
last decade, so the GPU-CPU performance gap is widening.

In this paper, we address the problem of efficient implemen-
tation of scientific algorithms on GPUs. The GPUs have
been used for solving sparse and dense linear systems, eigen-
decomposition, matrix multiplication, fluid flow simulation,
FFT, sorting and finite-element simulations [2005; 2004].
The GPU-based algorithms exploit the capabilities of mul-
tiple vertex and fragment processors along with high mem-
ory bandwidth to achieve high performance. Current GPUs
support 32-bit floating point arithmetic and GPU-based im-
plementations of some of the scientific algorithms have out-
performed optimized CPU-based implementations available
as part of ATLAS or the Intel Math Kernel Library (MKL).
However, there is relatively less work on developing appro-
priate memory models to analyze the performance or design-
ing cache-efficient GPU-based algorithms.

Current GPU architectures are designed to perform vector
computations on input data that is represented as 2D arrays
or textures. They achieve high memory bandwidth using
a 256-bit memory interface to the video memory. More-
over, the GPUs consist of multiple fragment processors and
each fragment processor has small L1 and L2 SRAM caches.
As compared to conventional CPUs, the GPUs have fewer
pipeline stages and smaller cache sizes. The GPUs perform
block transfers between the caches and DRAM-based video
memory. As a result, the performance of GPU-based scien-
tific algorithms depends on their cache efficiency.

Main results: We present a memory model to analyze the
performance of GPU-based scientific algorithms and use this
model to improve their cache efficiency. We take into ac-
count architectural features of the GPUs including memory
representations, data processing and memory addressing ca-
pabilities of GPUs to design our model. Our model is based
on texturing hardware that uses 2D block-array representa-
tion to transfer the data between the caches and the video
memory. Moreover, we use the well-known 3C’s model
[1989] to analyze the cache misses and evaluate the memory
performance of scientific and general purpose algorithms on
GPUs. Based on this model, we present efficient tiling al-
gorithms to improve the performance of three applications:
sorting, fast Fourier transform and dense matrix multiplica-
tion. We compare their performance with prior GPU- and
CPU-based optimized implementations. In practice, our al-
gorithms are able to achieve 30–50 GB/s memory throughput
on a NVIDIA 7900 GTX GPU, which costs around $600.

Moreover, we have observed 2–5× performance improve-
ment over optimized CPU-based implementations running
on high-end dual 3.6 GHz Xeon processors or dual Opteron
280 processors, which cost around $2,000.

Organization: The rest of the paper is organized in the fol-
lowing manner. We give a brief overview of prior work
on cache efficient algorithms, scientific libraries and GPU-
based algorithms in Section 2. Section 3 describes our mem-
ory model and presents a technique for efficient implemen-
tation of nested loops on GPUs. We analyze our memory
model in Section 4 and use it to improve the performance of
sorting, matrix multiplication and FFT algorithms. We com-
pare their performance with prior algorithms in Section 5.

2 Related Work

In this section, we give a brief overview of prior work on
CPU memory models, scientific libraries and GPU-based al-
gorithms.

2.1 CPU-based Memory Models

Modern computers use hierarchies of memory levels, where
each level of memory serves as a cache for the next level.
One of the widely used memory model is the two-level I/O-
model defined by Aggarwal and Vitter [1988] that captures
the main characteristics of a memory hierarchy. The two-
level I/O-model consists of a fast memory called cache of
size M and a slower infinite memory. Data is transferred
between the levels in blocks of consecutive elements. By
concatenating multiple two-level I/O-models, we can model
a memory hierarchy with multiple levels.

The problem of designing cache-efficient algorithms has re-
ceived considerable attention over last two decades in theo-
retical computer science, compilers and computer architec-
ture. These algorithms include theoretical models of cache
behavior [2001; 2002] , and compiler optimizations [1994];
all of these can minimize cache misses [1995]. Many of
these optimizations are implemented in current compilers.

At a high level, cache-efficient algorithms can be classified
as either cache-aware or cache-oblivious. Cache-aware algo-
rithms utilize knowledge of cache parameters, such as cache
block size [2001]. On the other hand, cache-oblivious al-
gorithms do not assume any knowledge of cache parame-
ters [1999]. There is considerable literature on developing
cache-efficient algorithms for specific problems and appli-
cations, including numerical programs, sorting, geometric
computations, matrix multiplication, FFT, and graph algo-
rithms. Most of these algorithms reorganize the data struc-
tures for the underlying application, i.e., computation re-
ordering. More details are given in a recent survey [2004].

2.2 Scientific Libraries and Compiler Optimizations

Scientific and numerical libraries are typically designed us-
ing a layered approach with good data reuse. The main
idea is to identify a set of core operations for which algo-
rithms with good data reuse are known, carefully implement
these algorithms on the hardware and use those operations
to develop application programs. Examples of such scien-
tific libraries include LAPACK [1992] and ATLAS1 for lin-
ear algebra software, FFTW2 to compute the discrete fourier
transform, and Intel’s Math Kernel Library (MKL), which is
highly optimized for Intel processors.

Many algorithms have been proposed in programming lan-
guages and compiler literature to generate blocked code to
achieve higher performance based on the memory hierar-
chies in the machines. This includes work on restructuring
based on space tiling [1987] and linear loop transformations
[1990; 1993]. These approaches are typically restricted to
perfectly nested loops, and can be extended to imperfectly
nested loops if these loops are first transformed into perfectly
nested loops through the use of code sinking [1995]. Carr
and Kennedy [1992] propose a list of transformations, in-
cluding strip-mine-and-interchange, index-set-splitting, and
loop distribution, which are based on the control flow of the
program. Other approaches directly reason about the flow of
data through the memory hierarchy [1997]. Many memory
models have also been proposed to estimate program perfor-
mance for nested loops [1991; 1995].

2.3 GPU-based Algorithms

GPUs have been shown useful for many scientific, geomet-
ric and database computations. This includes work on using
GPUs for linear algebra computations including matrix mul-
tiplication [2001; 2003; 2004], and sparse matrix computa-
tions [2003; 2003]. Sparse matrix computations are itera-
tive methods, such as Jacobi iteration [2005] and conjugate
gradient methods [2003]. The core operations of these al-
gorithms are either local stencil operations or matrix-vector
multiplication and vector dot products. Recently, GPU-
based algorithms have also been proposed for LU decom-
position on dense matrices [2005]. Other scientific compu-
tations include fluid flow simulation using the lattice Boltz-
man model [2004], cloud dynamics simulation [2003], finite-
element simulations [2001], ice crystal growth [2003], etc.
For an overview of recent work, we refer to Lastra et al.
[2004] and Owens et al. [2005].

GPUs have also been used for sorting and database opera-
tions [2004; 2005; 2003; 2004]. These algorithms imple-
ment bitonic sort on the GPU as a fragment program and
each stage of the sorting algorithm is performed as one ren-
dering pass. The efficiency of these algorithms is governed
by the number of instructions in the fragment program and

1http://www.netlib.org/atlas
2http://www.fftw.org

the number of texture operations.

Some high-level programming interfaces based on streaming
languages have been proposed to program the GPUs, includ-
ing BrookGPU [2004] and Sh [2004]. These interfaces use
the programmable features of GPUs and attempt to hide the
underlying aspects of graphics hardware.

There is relatively less work on developing good memory
models and cache-efficient algorithms for GPUs. Some of
the work has focused on analyzing the performance of GPU-
based matrix-matrix multiplication algorithms. Hall et al.
[2003] propose a cache-aware blocking algorithm for matrix
multiplication on the GPUs. Their approach only requires a
single rendering pass by using the vector capabilities of the
hardware. Fatahalian et al. [2004] have shown that matrix-
matrix multiplication can be inefficient on prior GPUs due to
low cache bandwidth limitations.

3 GPU Memory Model

In this section, we give a brief overview of GPU architec-
tures. We present our memory model to analyze the perfor-
mance of GPU-based algorithms and highlight some of the
differences with CPU-based memory models and optimiza-
tion techniques.

3.1 Graphics Processors (GPUs)

GPUs are mainly designed for rapidly transforming 3D ge-
ometric primitives into pixels on the screen. Overall, they
can be regarded as massively parallel vector processors. The
recent introduction of programmability enables the GPUs
to perform many kind of scientific computations efficiently.
In this section, we briefly describe the data representations
used by these scientific algorithms and the underlying mech-
anisms used to access the data and perform the computations
on GPUs:

• Memory Representation: The graphics processor is de-
signed to perform vector computations on input data
represented as 2D arrays or textures. Each element of
a texture is composed of four color components, and
each component can store one floating point value. Cur-
rent GPUs only support 32-bit floating point representa-
tions. The scientific algorithms represent the input data
in 2D textures and perform streaming computations on
the data elements in the 2D textures.

• Data processing: In order to perform computations on
a data element, a quadrilateral covering the element lo-
cation is rasterized on the screen. The rasterization pro-
cess generates a fragment for each covered element on
the screen and a user-specified program is run for each
generated fragment. Since each fragment is evaluated
independently, the program is run in parallel on several
fragments using an array of fragment processors. The

output of the fragment processor can be written to the
corresponding element location through a high band-
width memory interface. Some of the main benefits of
the GPU arises from the fact that current GPUs offer
10× higher main memory bandwidth and use data par-
allelism to achieve up to 10× more operations per sec-
ond than current CPUs.

• Memory addressing: The fragment processors access
the input data representations (or textures) using the
texture mapping hardware. The texturing hardware
maps the elements in the input 2D arrays to the data
element locations on the screen. The mapping is spec-
ified by rasterizing a quadrilateral that covers the el-
ement locations on the screen and each vertex of the
quadrilateral is associated with a texture or 2D array co-
ordinates. The texture mapping hardware performs bi-
linear interpolation of the array coordinates to compute
the mapped coordinates for each pixel that is covered
or rasterized. A 2D lookup is then performed on the 2D
input array, and the data element at the array location is
assigned to the fragment.

3.2 GPU Memory Model

Current GPUs achieve high memory bandwidth using a 256-
bit memory interface to the video memory. The textures
used in GPU rendering operations are stored in a DRAM-
based video memory. When a computation is invoked, the
fragment processors access the data values from the DRAM
using texturing hardware. In order to mask high DRAM la-
tencies, a block transfer is performed to small and fast L1
and L2 SRAM caches, which are local to the fragment pro-
cessors. These prefetch sequential block transfers utilize the
memory bus efficiently. This is one of the major reasons that
GPUs are able to obtain 10x higher memory bandwidth as
compared to current CPUs.

Given this memory organization, the 2D texture array on
GPUs is represented using a 2D block-based representation
for rasterization applications [1997]. In our block-based
model, we assume that the 2D array is tightly partitioned into
non-overlapping 2D blocks of size B×B. Each 2D block rep-
resents a cache block and when an array value corresponding
to the 2D block region is accessed, our model assumes that
the entire block is fetched into the cache if it is not present.
This 2D block-based representation is designed to exploit
the spatial locality of texture memory accesses in graphics
applications. Moreover, memory addressing in GPUs is per-
formed using bilinear interpolation capabilities of the textur-
ing hardware. As a result, the memory accesses for a 2D re-
gion of pixels correspond to a 2D block of texture addresses
that have spatial coherence. In practice, the block-based rep-
resentation efficiently exploits the spatial locality in memory
accesses.

As compared to current CPUs, the GPUs have fewer pipeline
stages. Therefore, the GPUs are able to better hide the mem-

Figure 1: This figure shows a color-coding of the regions corre-
sponding to increment and decrement operations in Y while exe-
cuting the nested loops in routine 3.1. The orange colored regions
indicate increment operations and green-colored regions represent
decrement operations.

ory latency as compared to the CPUs. This is the main reason
that GPUs have smaller cache sizes than CPUs (e.g. one or-
der of magnitude smaller). Due to the small cache sizes on
GPUs, only a few blocks can fit at any time in the cache.
As a result, the GPU memory organization is quite different
than that of CPUs. In order to analyze the GPU cache be-
havior, we incorporate the well known 3C’s model [1989]
into our memory model. In the 3C’s model, cache misses are
classified as:

1. Compulsory or cold misses which are caused due to the
first reference of a block that is not in cache.

2. Capacity misses which occur due to the limited cache
sizes.

3. Conflict misses that are due to multiple blocks that map
to the same set.

Unlike the CPU vendors, the GPU vendors currently do not
disclose the cache sizes, replacement policies, or bandwidth.
As a result, the 3C’s model is well-suited to analyze and im-
prove the cache behavior of scientific applications on GPUs
as it does not assume such cache information. In particu-
lar, we focus on minimizing the capacity and conflict misses
because compulsory misses are unavoidable.

3.3 Nested Looping and Quadrilateral Rasterization
Cache Analysis

Nested loops are commonly used in many scientific algo-
rithms. In this subsection, we show nested loops can be im-
plemented efficiently on GPUs. There is considerable lit-
erature on cache analysis on CPUs to optimize data local-
ity in nested loops [Wolfe et al. 1995; Carr and Kennedy
1992]. On GPUs, implementing nested loops is analogous
to quadrilateral rasterization. However, GPUs use different
memory representations. Therefore, memory optimization
techniques designed for CPU-based algorithms may not di-
rectly apply to GPUs. In this section, we use our memory
model and CPU-based strip-mining algorithms to analyze
the differences in optimized code generated for nested loops
on CPUs and GPUs.

C-Based CPU Cache-Efficient Nested Loop Example

1 s = 0

2 for(i = 0; i <
H
2h ; i = i+1)

3 for(j = 0; j < h; j = j +1) // loop to increment

4 for(k = 0;k < W ;k = k +1)

5 Y [s][k] = X [s][k]+1

6 s = s+1

7 for(j = 0; j < h; j = j +1) // loop to decrement

8 for(k = 0;k < W ;k = k +1)

9 Y [s][k] = X [s][k]−1

10 s = s+1

Analogous GPU Cache-Inefficient Nested Loops

1 s = 0

2 for(i = 0; i <
H
2h ; i = i+1)

3 Set fragment program to increment

4 Draw a rectangular quad with co-ordinates (s,0), (s,W), (s+h,W), (s+h,0)

5 s+ = h

6 Set fragment program to decrement

7 Draw a rectangular quad with co-ordinates (s,0), (s,W), (s+h,W), (s+h,0)

8 s+ = h

ALGORITHM 3.1: Implementation of nested loops on CPUs and GPUs. The
different computations on the GPUs are performed using fragment programs.

We use a simple nested loop example in C programming lan-
guage (see Algorithm 3.1) to explain the difference. In this
example, each data element in an input array X is accessed
once. We either increment or decrement the elements in X
and store the result in the output array Y . Fig. 1 shows a
color-coding of Y , where the orange color represents regions
in Y when the elements in X are incremented and green color
represents regions where the elements in X are decremented.
Suppose the width of the array is W and height of the array
is H. Also, let W � B where B is the block size. Suppose
the height of the orange or green regions is h. As the data ac-
cesses are sequential and CPU cache lines are 1-D, the CPU
looping code is efficient for data locality.

The GPU-based nested looping is analogous to the CPU
code, where a single loop traverses the array from the top-
to-bottom. Within each loop iteration, we rasterize a quadri-
lateral either to increment the data values using a fragment
program in orange-colored regions or to decrement the data
values using a second fragment program in green-colored re-
gions. Although the CPU-code is efficient for memory ac-
cesses on CPUs, the corresponding GPU code has significant
memory overhead when h < B due to conflict and capac-
ity misses. Due to the limited cache sizes, we observe that
each quadrilateral rasterization could result in many cache
evictions. In fact, majority of the blocks fetched earlier dur-
ing rasterization are evicted by the later blocks irrespective
of the cache replacement policy. Using our memory model,
we analytically determine the number of cache misses to be
W×H
B×h and the number of cold misses to be W×H

B×B . In sec-
tion 4, we present experimental and theoretical analysis on
the GPU cache performance as a function of the cache pa-

Figure 2: Texture caches on a commodity GPU: NVIDIA GeForce
7800 : It has 24 programmable fragment processors. The frag-
ment processors have a high memory bandwidth interface to the
video memory. The GPU has a core clock of 450 MHz and a mem-
ory clock of 1.2 GHz, and can achieve a peak memory bandwidth
of 38.4 GBps. Each fragment processor has access to a local L1
texture cache and multiple fragment processors share accesses to a
small L2 texture cache.

rameters for nested loops such as Algorithm 3.1 in scientific
computations.

4 GPU Memory Model: Analysis

and Applications

In this section, we first use our memory model to iden-
tify the GPU block sizes and cache sizes for measuring the
memory efficiency of scientific algorithms in terms of the
cache misses. We also present improved algorithms for three
memory-intensive applications—bitonic sort, fast Fourier
transforms and matrix multiplication algorithms and com-
pare their performance against fast CPU-based algorithms
on high-end SMP machines.

4.1 Sorting and Caching

Sorting is a fundamental data management operation and
has been studied for more than five decades. Sorting
is a compute-intensive and memory-intensive operation—
therefore, it can utilize the high compute and memory
throughput on GPUs. In this section, we analyze the problem
of bitonic sorting networks [2006; 2003; 2004].

Bitonic sorting network performs data-independent com-
parisons on bitonic sequences [1968]. Given a sequence
a = (a0,a1, . . . ,an), the bitonic sorting algorithm proceeds
in multiple stages and in each stage, it merges two bitonic
sequences of equal length. Specifically, for each stage k per-
formed in the order k = 1, . . . , logn, we merge two sequences
of size 2k−1.

Figure 3: This figure shows the 2-D mapping of comparisons
among array elements in step 2 and stage 3 on an input array of size
8. In this example, the width of the 2D array is 2 and height is 4.
In each step, the array is decomposed into data chunks where mini-
mum or maximum operations are performed. The data chunks now
correspond to row-aligned quads and the sorting network maps well
to the GPU 2D texturing hardware. The texturing hardware fetches
the data values at a fixed distance for each pixel, and a single-
instruction fragment program computes the minimum or maximum
on the pixel. The minimum or maximum is computed in parallel on
multiple pixels simultaneously using the fragment processors. The
rasterization of the 2D quads is a nested loop similar to the code in
3.1.

In stage k, our algorithm performs k steps in the order k to
1. In each step, the input array is conceptually divided into
chunks of equal sizes (size d = 2 j−1 for step j) and each el-
ements in one chunk is compared against the corresponding
element in its adjacent chunk i.e., an element ai in a chunk is
compared with the element at distance d (ai+d or ai−d). The
minimum is stored in one data chunk and the maximum is
stored other data.

The algorithm maps well to GPUs. In each step, we read val-
ues from an input array or texture, perform comparison oper-
ations using a fragment program and store the output in an-
other array or texture. The output array is then swapped with
the input array. As GPUs are optimized for 2D representa-
tions, the 1D data chunks for minimum or maximum com-
putations are conceptually represented using row-aligned or
column-aligned quadrilaterals as shown in Figure 3. We
therefore, rasterize 2D quadrilaterals each corresponding to a
1-D data chunk in the step. For more details, refer to Govin-
daraju et al. [2006].

The overall sorting algorithm requires a large number of
O(n log2 n) compute and memory operations. Therefore,
cache-analysis can significantly improve the performance of
GPU-based sorting algorithms.

4.1.1 Cache Block Analysis

The 2D quadrilateral rasterization algorithm in each step is
a nested loop similar to the algorithm 3.1 in Section 3.3.

Figure 4: Our memory model for a NVIDIA 7800 GTX GPU pre-
dicts the block size for efficient sorting on GPUs. The analysis
closely matches the experimental results for a cache block size of
8×8.

Each step performs two sequential read operations and one
sequential write operation per data element. Using our mem-
ory model, we expect ncompulsory = W×H

B2 compulsory misses.
Without loss of generality, let us assume we are rendering
row-aligned quads of height h and width W . We perform
cache analysis in these two cases based on the height of the
row-aligned quad.

Case 1: h ≥ B. In this case, all the cache misses in render-
ing the quad are compulsory misses. Note that the blocks
corresponding to each row-aligned quad is accessed exactly
twice. Therefore, the total number of cache misses for ren-
dering row-aligned quads with h ≥ B is 2ncompulsory.

Case 2: h < B. In this case, conflict or capacity misses can
occur if nblocks do not fit in the cache. This is mainly be-
cause the cache blocks fetched at the beginning of the quad
are mostly evicted by the end of the quad. Within a region
of W ×B, based on the rendering operations, each block is
accessed count(h) = 2B

h times and results in count(h) cache
misses. As there are ncompulsory blocks, the algorithm results
in count(h) ∗ ncompulsory cache misses. Note that as h be-
comes smaller, the number of cache misses increase. There-
fore, later steps in the stage have cache misses.

In the overall algorithm, step k is performed (logn−(k−1))
times and h = 2k−1 for k = 1, . . . , logn. The total num-
ber of cache misses is close to 2n f (B) where f (B) = (B−

1)(logn−1)+0.5(logn− logB)2.

Figure 4 compares our cache model to the observed times as
a function of n and B on a 7800 GTX GPU. The theoreti-
cal timings in Figure 4 is computed assuming the algorithm
achieves peak sequential memory bandwidth of 40 GB/s on a
NVIDIA 7800 GTX GPU. The graph indicates that our cache
analysis closely matches the observed values using the block
size 8×8.

Figure 5: The computational time of our cache-efficient bitonic sort
algorithm as a function of the number of data values on a 7800 GTX
GPU. We observe that the experimental results closely match the
theoretical results for a 64×64 block size. The graph indicates that
our algorithm achieves 37 GB/s memory bandwidth, close to the 40
GB/s maximum.

Figure 6: The performance of our cache-efficient sorting algorithm
as a function of tile size sorting 8M floating point key-pointers us-
ing a 7800 GTX GPU. 64× 64 tiles had the best performance. As
the tile size decreases, the vertex overhead dominates the memory
bandwidth savings. As the tile size increases beyond 64×64, mem-
ory performance degrades due to cache misses.

4.1.2 Cache Sizes and Cache-Efficient Algorithm

We present an improved sorting algorithm that maximizes
cache utilization for given block and cache sizes. It mini-
mizes the number of conflict or capacity misses using a tech-
nique similar to blocking. We decompose row-aligned quads
with width W and height h into multiple quads of width B
and height h if h < B. Similarly, we decompose column-
aligned quads with width w and height H into multiple quads
of width w and height B if w < B. We then perform compu-
tation on all the quads lying within the B × B block. For
the remaining quads, we do not perform any row or column
decomposition.

Our row and column decomposition algorithm reduces the
number of cache misses to 2ncompulsory misses per step if the
decomposition size matches the hardware cache size. This
decomposition has an additional advantage of reducing the
cache misses by fetching relevant blocks into the caches.
Figure 5 highlights the observed and theoretical performance

Figure 7: The performance of our cache-efficient FFT algorithm as
a function of tile size on 4M complex floating point values using a
7800 GTX GPU. We obtained the best performance using T ×T =
64×64 tiles.

of our cache-efficient algorithm as a function of n, memory
and clock speeds on the 7800 GTX GPU. The graph indi-
cates that our algorithm achieves nearly 37 GB/s memory
bandwidth. This is almost 97% of the peak memory band-
width on the 7800 GPU.

Figure 6 illustrates the algorithm’s performance as a func-
tion of the decomposition block or tile size. We achieve an
optimal performance at a tile size of 64× 64. Our results
suggest that the cache size on a 7800 GTX GPU can be close
to 128 KB.

4.2 Fast Fourier Transforms

Fast fourier transforms (FFTs) is a basic building block to
signal processing and frequency analysis applications. In
this section, we consider the problem of large 1-D power-
of-two FFTs on GPUs. Many FFT algorithms such as
the Cooley-Tukey algorithm [1997] require expensive bit-
reversal operations. In order to avoid bit-reversal, we use
a standard Stockham formulation of the FFT. Given a se-
quence with n values, the Stockham FFT proceeds in mul-
tiple steps, similar to steps used in the bitonic sorting algo-
rithm. Specifically, in step k, it performs data-independent
transformations on two subsequences of size 2k−1 and gen-
erates a new sequence of size 2k. The transformations are
performed on an input array X and the output is stored in
another array Y . At the end of each step, we swap the input
and output arrays. The overall FFT algorithm proceeds in
logn steps, in the order k = 1, . . . , logn. In each step k, we
conceptually partition both the output array Y and input ar-
ray X into data chunks of size 2k−1. This results in 2m data
chunks where m = n

2k . Each element in a data chunk 2ith

or (2i + 1)th in Y is mapped to the elements at a fixed dis-
tance in data chunks ith and (i + m)th in X . A multiply-and-
add (MAD) operation is then performed on the two elements
fetched from data chunks i and i + m in X and the output is
stored appropriately in Y .

GPUs support vectorized MAD operations. Therefore, we
can exploit the high data parallelism to compute the trans-

Nested Loop Stockham FFT

1 for(step = 1;step ≤ logn;step = step+1)

2 for(j = 0; j < 2logn−step; j = j +1)

3 for(k = 0;k < 2step−1;k = k +1)

4 angle = −
2πk
2t

5 out[j2t + k] = in[j2t−1 + k]+ ei angle in[j2t−1 + k + n
2]

6 out[j2t + k +2t−1] = in[j2t−1 + k] - ei angle in[j2t−1 + k + n
2]

7 swap(in,out)

ALGORITHM 4.1: This pseudo-code illustrates the nested loop implementation
of Stockham FFT algorithm. The FFT algorithm proceeds in logn steps and during
each step j, the output array is conceptually divided into data chunks of size 2 j (lines
5 and 6). Similarly, the input chunks are conceptually divided into data chunks of
size 2 j−1 and two input data chunks are mapped onto the appropriate output chunks.
In terms of a GPU-based algorithm, these data chunks correspond to texture mapping
row-aligned or column-aligned quadrilaterals onto row-aligned or column-aligned re-
gions. The overall FFT algorithm involves no data reordering, requires significant
computation at each data element and maps well to the affine memory addressing and
vector-processing capabilities of GPUs.

formations on each data chunk in Y . The mapping of data
chunks in Y to data chunks in X is a nested loop similar to
the routine 3.1. We map the 1-D operations into 2D arrays on
GPUs similar to the bitonic-sorting network. The mapping
however, has more complex memory access patterns than in
sorting. Given a 2D array representation with width W and
height H, the memory access pattern for FFTs is dependent
on the size of the data chunk in a step. It can be described as
follows:

• Data chunk size 2k−1 < W : In this case, Y is divided
into column-aligned quads of width 2k−1 and height H.
X is divided into column-aligned quads of width 2k−1

and height H
2 . It can be seen that each column aligned

quad in Y maps to four column-aligned quads in X .

• Data chunk size 2k−1 ≥ W : Both Y and X are concep-
tually divided into row-aligned quads of width W and
height 2k−1

W . In this case, each row-aligned quad in Y
maps to two row-aligned quads in X .

The overall FFT algorithm requires O(n logn) memory and
compute operations. Furthermore, the memory access pat-
terns are more complex than sorting—therefore, we can ex-
pect more benefit by performing cache analysis on FFTs.

4.2.1 Cache-Efficient GPU-FFT

The FFT algorithm suffers from similar cache issues as
bitonic sort. However, our GPU-FFT algorithm is more
memory intensive for column-aligned steps than bitonic sort-
ing. Similar to the bitonic sorting network, we partition Y
into tiles of size T ×T if the height or width of the quadri-
lateral is less than T or T

2 respectively. We perform compu-
tation within the tile before proceeding to the next tile. Fig.
7 highlights the performance of the FFT algorithm as a func-
tion of the tile size.

The FFT algorithm is also more compute-intensive than our

Figure 8: The performance of our cache-efficient matrix multipli-
cation algorithm as a function of tile size for multiplying two 2K
× 2K floating point matrices using a 7800 GTX GPU. We obtained
the best performance using T × T = 64× 64 tiles and a depth of
16. As the block depth decreases, the vertex overhead dominates
the memory bandwidth savings. The performance at T = D = 32
degrades due to increase in time due to more fragment operations.

sorting algorithm. The overall FFT algorithm requires ∼ 24
operations per data element whereas sorting requires ∼ 10
operations per data element.

4.3 Dense Matrix-Multiplication

The problem of dense matrix multiplication is inherently par-
allel and highly memory intensive - therefore, it can greatly
benefit from the high computational throughput and memory
performance of GPUs.

Let Xi j denote the element at the ith row and jth column.
Then, matrix multiplication Z = XY computes elements Zi j
using the dot product between ith row in X and jth column in
Y . Suppose X and Y are n× n matrices. The simplest algo-
rithm to implement matrix-multiplication uses three nested
loops. The pseudo-code for the algorithm is shown in Al-
gorithm 4.2. Larsen and McAllister [2001] implemented the
unblocked algorithm using simple blending and texture map-
ping functionality on GPUs. Their algorithm has O(n3) com-
pute and memory references and is memory-bound. Hall et
al. [2003] analyzed the performance of block-based matrix-
multiplication algorithm for GPUs using an algorithm simi-
lar to the CPU-based algorithms. However, blocking is done
only along one dimension and the resulting algorithm uses
cache-efficiently if the underlying hardware performs im-
plicit blocking.

We perform explicit blocking to avoid hardware depen-
dencies. Moreover, our improved block-based matrix-
multiplication algorithm takes into account the graphics
pipeline architecture. Our algorithm decomposes the ma-
trix Z into blocks of size T × T . Computation on the tiles
of size T × T is invoked by drawing quadrilaterals of size
T ×T on the screen. Then a single fragment program eval-
uates the dot product from vectors of size D in X and Y .
Therefore, the time spent per element in Z depends on D and

L-M GPU-based Unblocked Nested Loop Matrix Multiplication

1 for(i = 0; i < N; i = i+1)

2 for(j = 0; j < N; j = j +1)

3 Zi j = 0

//Each iteration in the following loop is a quadrilateral rasterization of size

N ×N

4 for(k = 0;k < N;k = k +1)

5 Zi j = Zi j +Xik ∗Yk j

Hall et al.’s GPU-based Blocked Nested Loop Matrix Multiplication

1 for(kb = 0;kb < N;kb = kb+T)

//following two loops invoked using a quadrilateral of size N ×N

2 for(i = 0; i < N; i = i+1)

3 for(j = 0; j < N; j = j +1)

4 for(k = 0;k < T ;k = k +1) //loop performed inside a fragment program

5 Zi j = Zi j +Xik ∗Yk j

Our GPU-based Blocked Nested Loop Matrix Multiplication

1 for(ib = 0; ib < N; ib = ib+T)

2 for(jb = 0; jb < N; jb = jb+T)

3 for(kb = 0;kb < N;k = kb+D)

//following two loops invoked using a quadrilateral of size T ×T

4 for(i = ib; i < ib+T ; i = i+1)

5 for(j = jb; j < jb+T ; j = j +1)

6 for(k = kb;k < kb+D;k = k +1)//loop performed inside a fragment

program

7 Zi j = Zi j +Xik ∗Yk j

ALGORITHM 4.2: This pseudo-code shows the differences between our GPU-
based explicit blocking algorithm and prior GPU-based matrix multiplication algo-
rithms. The Larsen-McAllister algorithm is unblocked and performs O(n3) memory
references. Hall et al. proposed an improved algorithm that performs implicit block-
ing. We perform explicit blocking and use a different blocking parameter for each of
the inner loops. The innermost loop (line 6) in our algorithm is performed using a frag-
ment program. The loop length in line 6 determines the number of fragment operations
performed per data element per sequential write.

achieves maximal performance when fragment processing
time matches the sequential write time to the video memory.
In contrast, the CPU-based matrix-multiplication algorithm
performs uniform blocking along the three nested loops.

Fig. 8 highlights the performance of matrix-multiplication
on GPUs as a function of T and D using a matrix of size 2K
× 2K.

5 Analysis and Comparisons

In this section, we analyze the performance of our algorithm
on different GPUs and compare its performance to optimized
scientific libraries on CPUs.

5.1 Performance

We have tested the performance of our applications on three
different GPUs – NVIDIA 6800 Ultra, NVIDIA 7800 GTX
and NVIDIA 7900 GTX GPU released in successive gener-
ations (see Fig. 9). For sorting 8M key-pointer pairs, we ob-
tain an average of 14.3 GOPS on the 7900 GTX GPU while

Figure 9: Normalized Performance of our cache-efficient applica-
tions on three successive generation GPUs—NVIDIA 7900, 7800
and 6800 GPUs. Our sorting, FFT and matrix multiplication algo-
rithms are able to achieve 50, 30 and 40 GB/s memory performance
respectively on a single NVIDIA 7900 GTX GPU.

the 7800 GTX and 6800 Ultra GPUs achieve 10.1 and 3.5
giga-operations per second. The observed bandwidth in the
sorting benchmark is nearly 50 GB/s on a 7900 GTX GPU
and is nearly 92% of the peak memory throughput.

In the FFT benchmark, we have measured the GFLOPS ob-
tained using our algorithm using the standard FFTW metric3.
On a 4 million single precision complex FFT benchmark,
we are able to obtain 6.1 GFLOPS on a 7900 GTX GPU,
5.7 GFLOPS on a 7800 GTX GPU and 2.14 GFLOPS on a
NVIDIA 6800 Ultra GPU. We are able to attain a memory
bandwidth of 32 GB/s on a NVIDIA 7900 GTX GPU for
performing complex FFTs.

Our matrix multiplication algorithm achieves 17.6 GFLOPS
on a NVIDIA 7900 GTX GPU and 9.2, 8 GFLOPS on a
7800 GTX and 6800 Ultra GPUs respectively. Our cache-
efficient matrix multiplication algorithm is able to achieve
nearly 40 GB/s memory performance on a single NVIDIA
7900 GTX GPU. Using NVPerfKit4, we are able to experi-
mentally verify that the percentage of texture cache misses
in our applications is less than 6%—thus verifying that our
algorithm is able to utilize the cache performance efficiently.

5.2 Comparison with Prior CPU-based and GPU-based
Algorithms

We have compared the performance of our algorithm against
prior GPU-based sorting and matrix-multiplication algo-
rithms. Fig. 10 highlights the performance of our cache-
optimized algorithms to sort 4M floating point key-pointer
pairs or to multiply 2K × 2K floating point matrices. We
observe that our matrix multiplication algorithm performs
around 23−80% better than prior GPU SGEMM algorithms.
In the sorting application, our algorithm achieves 2–3× per-
formance improvement over prior GPU-based sorting algo-
rithms. We also compared the performance of our algo-
rithm against libgpufft. Our algorithm does not require bit-

3http://www.fftw.org/speed
4http://developer.nvidia.com/object/nvperfkit home.html

Figure 10: Normalized elapsed time of our cache-efficient appli-
cations against prior GPU-based algorithms on a NVIDIA 7900
GPU. Our cache-efficient algorithms are able to achieve 2–3× per-
formance improvement over prior GPU-based scientific algorithms.

reversal-based data rearrangements and therefore, it is able
to achieve higher performance than libgpufft.

We have measured the performance of our algorithm against
optimized cfft1d and SGEMM implementations in the Intel
Math Kernel library. We used the optimized Intel quick-
sort routine5 using hyperthreading and function inlining. We
measured the performance of our algorithms on a SMP ma-
chine with dual 3.6 GHz Xeon processors with hyperthread-
ing, another SMP machine with two dual-core Opteron 280
processors and a high-end 3.4 GHz Pentium IV PC with
hyperthreading. We have used four threads to perform the
CPU-based computations on dual Xeon and opteron proces-
sors, and two threads on the Pentium IV processor. Our
results highlighted in Fig. 11 indicate that our GPU matrix
multiplication algorithm on a single 7900 GTX GPU per-
forms comparably to the dual Xeon and Opteron processors.
In terms of performance/cost, the 7900 GTX GPU is 3-4x
better than Xeon or Opteron processors. Our sorting algo-
rithm is able to achieve 1.5–2× performance improvement
over MKL implementation on high-end Intel processors and
performs comparably to MKL routines on the AMD Opteron
280 processor. Our FFT algorithm is able to achieve 4–5×
performance improvement over Xeon or Opteron processors.

6 Conclusions and Future Work

We presented a novel memory model for analyzing and im-
proving the performance of GPU-based scientific algorithms.
We have applied our memory model to three scientific appli-
cations and compared their performance against prior opti-
mized CPU-based and GPU-based algorithms. Our results
indicate a significant performance improvement using a sin-
gle NVIDIA 7900 GPU.

There are several avenues for future work. We would like to
5http://www.intel.com/cd/ids/developer/asmo-

na/eng/dc/threading/hyperthreading/20372.htm

Figure 11: Performance of our cache-efficient applications on a
NVIDIA 7900 GPU against optimized scientific algorithms on
high-end SMP machines with dual Xeon or two dual-core Opteron
processors.

incorporate our cache models into GPGPU compilers such
as BrookGPU [2004] and Sh [2004]. We are interested in
applying our memory model to other scientific applications
and streaming architectures such as the IBM Cell processor.

Acknowledgements

This work is supported in part by ARO Contracts DAAD19-
02-1-0390 and W911NF-04-1-0088, NSF awards 0400134
and 0118743, DARPA/RDECOM Contract N61339-04-C-
0043, ONR Contract N00014-01-1-0496 and Intel Corpora-
tion. We would like to thank Craig Peeper, Peter-Pike Sloan,
and David Blythe of Microsoft Corporation, Mike Houston,
Mark Segal and Alpana Kaulgud of ATI Corporation for use-
ful feedback. Many thanks to John Owens and Daniel Horn
for providing performance numbers of libgpufft and for valu-
able feedback. We would also like to thanks David Tuft and
other members of UNC GAMMA group for useful sugges-
tions and support.

References
AGGARWAL, A., AND VITTER, J. S. 1988. The input/output complexity of sorting

and related problems. Commun. ACM 31, 1116–1127.
ANDERSON, E., BAI, Z., BISCHOF, C., DEMMEL, J., DONGARRA, J., DU CROZ,

J., GREENBAUM, A., HAMMARLING, S., AND SORENSEN, D. 1992. LAPACK
User’s Guide, Release 1.0. SIAM, Philadelphia.

ARGE, L., BRODAL, G., AND FAGERBERG, R. 2004. Cache oblivious data structures.
Handbook on Data Structures and Applications.

BACON, D. F., GRAHAM, S. L., AND SHARP, O. J. 1994. Compiler transformations
for high-performance computing. ACM Comput. Surv. 26, 4, 345–420.

BANERJEE, U. 1990. Unimodular transformations of double loops. Proc. of the
Workshop on Advances in Lanugages and Compilers for Parallel Processing, 192–
219.

BATCHER, K. 1968. Sorting networks and their applications. In AFIPS Spring Joint
Computer Conference.

BOLZ, J., FARMER, I., GRINSPUN, E., AND SCHRÖDER, P. 2003. Sparse matrix
solvers on the GPU: conjugate gradients and multigrid. ACM Trans. Graph. 22, 3,
917–924.

BUCK, I., FOLEY, T., HORN, D., SUGERMAN, J., FATAHALIAN, K., HOUSTON,
M., AND HANRAHAN, P. 2004. Brook for GPUs: stream computing on graphics
hardware. ACM Trans. Graph. 23, 3, 777–786.

CARR, S., AND KENNEDY, K. 1992. Compiler blockability of numerical algorithms.
Proc. of ACM/IEEE Conference on Supercomputing, 114–124.

COLEMAN, S., AND MCKINLEY, K. 1995. Tile size selection using cache organi-
zation and data layout. SIGPLAN Conference on Programming Language Design
and Implementation, 279–290.

FAN, Z., QIU, F., KAUFMAN, A., AND YOAKUM-STOVER, S. 2004. GPU cluster for
high performance computing. In ACM / IEEE Supercomputing Conference 2004.

FATAHALIAN, K., SUGERMAN, J., AND HANRAHAN, P. 2004. Understanding the
efficiency of GPU algorithms for matrix-matrix multiplication. In Proceedings of
the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, Euro-
graphics Association.

FRIGO, M., LEISERSON, C., PROKOP, H., AND RAMACHANDRAN, S. 1999. Cache-
oblivious algorithms. Symposium on Foundations of Computer Science.

GALOPPO, N., GOVINDARAJU, N., HENSON, M., AND MANOCHA, D. 2005. LU-
GPU: Efficient algorithms for solving dense linear systems on graphics hardware.
In Proc. ACM/IEEE SuperComputing Conference.

GÖDDEKE, D. 2005. GPGPU performance tuning. Tech. rep., University of Dort-
mund, Germany. http://www.mathematik.uni-dortmund.de/~goeddeke/
gpgpu/.

GOVINDARAJU, N., LLOYD, B., WANG, W., LIN, M., AND MANOCHA, D. 2004.
Fast computation of database operations using graphics processors. Proc. of ACM
SIGMOD.

GOVINDARAJU, N., RAGHUVANSHI, N., AND MANOCHA, D. 2005. Fast and ap-
proximate stream mining of quantiles and frequencies using graphics processors.
Proc. of ACM SIGMOD.

GOVINDARAJU, N., GRAY, J., KUMAR, R., AND MANOCHA, D. 2006. GPUTera-
Sort: High performance graphics coprocessor sorting for large database manage-
ment. Proc. of ACM SIGMOD.

HAKURA, Z., AND GUPTA, A. 1997. The design and analysis of a cache archi-
tecture for texture mapping. Proc. of 24th International Symposium on Computer
Architecture, 108–120.

HALL, J. D., CARR, N., AND HART, J. 2003. Cache and bandwidth aware matrix
multiplication on the GPU. Technical Report UIUCDCS-R-2003-2328, University
of Illinois at Urbana-Champaign.

HARRIS, M., BAXTER, B., SCHEUERMANN, G., AND LASTRA, A. 2003. Simulation
of cloud dynamics on graphics hardware. SIGGRAPH/Eurographics Workshop on
Graphics Hardware.

HILL, M. D., AND SMITH, A. J. 1989. Evaluating associativity in cpu caches. IEEE
Transactions on Computers 38, 12, 1612–1630.

KIM, T., AND LIN, M. 2003. Visual simulation of ice crystal growth. In Proc. of
ACM SIGGRAPH / Eurographics Symposium on Computer Animcation.

KIPFER, P., SEGAL, M., AND WESTERMANN, R. 2004. Uberflow: A gpu-based
particle engine. SIGGRAPH/Eurographics Workshop on Graphics Hardware.

KODUKULA, I., AHMED, N., AND PINGALI, K. 1997. Data-centric multi-level
blocking. Proc. of ACM SIGPLAN, 346–357.

KRÜGER, J., AND WESTERMANN, R. 2003. Linear algebra operators for GPU im-
plementation of numerical algorithms. ACM Trans. Graph. 22, 3, 908–916.

LAM, M., ROTHBERG, E., AND WOLF, M. 1991. The performance and optimiza-
tion of blocked algorithms. Proc. of 4th International conference on Architectural
support for programming languages and operating systems, 63–74.

LARSEN, E. S., AND MCALLISTER, D. 2001. Fast matrix multiplies using graphics
hardware. In Proceedings of the 2001 ACM/IEEE conference on Supercomputing
(CDROM), ACM Press, 55–55.

LASTRA, A., LIN, M., AND MANOCHA, D. 2004. ACM workshop on general pur-
pose computation on graphics processors.

LI, W., AND PINGALI, K. 1993. Access normalization: loop restructuring for numa
computers. ACM Transactions on Computer Systems 11, 4, 353–375.

MCCOOL, M., TOIT, S. D., POPA, T., CHAN, B., AND MOULE, K. 2004. Shader
algebra. ACM Trans. Graph. 23, 3, 787–795.

OWENS, J., LUEBKE, D., GOVINDARAJU, N., HARRIS, M., KRUGER, J., LEFOHN,
A., AND PURCELL, T. 2005. A survey of general-purpose computation on graphics
hardware.

PURCELL, T., DONNER, C., CAMMARANO, M., JENSEN, H., AND HANRAHAN,
P. 2003. Photon mapping on programmable graphics hardware. ACM SIG-
GRAPH/Eurographics Conference on Graphics Hardware, 41–50.

RUMPF, M., AND STRZODKA, R. 2001. Using graphics cards for quantized FEM
computations. In Proc. of IASTED Visualization, Imaging and Image Processing
Conference (VIIP’01), 193–202.

SEN, S., CHATTERJEE, S., AND DUMIR, N. 2002. Towards a theory of cache-efficient
algorithms. Journal of the ACM 49, 828–858.

TOLIMIERI, R., AN, M., AND LU, C. 1997. Algorithms for Discrete Fourier Trans-
forms and Convolution. Springer.

VITTER, J. 2001. External memory algorithms and data structures: Dealing with
massive data. ACM Computing Surveys, 209–271.

WOLFE, M., SHANKLIN, C., AND ORTEGA, L. 1995. High performance compilers
for parallel computing. Addison-Wesley.

WOLFE, M. 1987. Iteration space tiling for memory hierarchies. Proc. of the Third
SIAM Conference on Parallel Processing for Scientific Computing, 357–361.

