Does access pattern affect latency!?

* This is the most important question.

* A benchmarking study done by Stanford
University
o Try different texture fetch
Cache — every fetch to the same texel

Sequential — every fetch increments address by |

Random — dependent lookup with random texture

Results

e Random is Bad, Coherent is Good
¢ Just like a CPU!

> out of cache
147GB/s

> sequential |
50GB/s
> random

GB/se

terrible

SGL SEQ DEP-RAND

NVIDIA 8800GTX

Off-board bandwidth

* How fast can we get data on the board
(download)!?

* How fast can we get data off the board
(readback)?

o PCl express has a theoretical limit of
4GB/s

° In practice, GL is about | GB/s, CUDA can
do over 2.7GB/s (about 85%).

» GPU <> HOST = SLOW

Programming on the GPU

* Old Model: use graphics API such as
OpenGL and DirectX

> Use programming tricks
> Hard to do

> Relatively slow

* New Model: Nvidia CUDA

> Extension to C
o Special Compiler - host code and kernal code

° (Huge) speed up

8800GTX Architecture

Host Device
* GPU - CUDA device —rr
ri
¢ Host — CPU program Kernel ——)
1 Block Block Block
(0, 0) (1.0) (2, 0)

e Thread — unit of

parallelism in CUDA Block” Block Block
©1 (1,1 @1

 Warp —a group of

threads 7 erid2
Kernel - > \
e Block —a group of 2 ‘ H ‘
warp rl T T |
Block (1, 1) :

e Grid — a group of
blocks

References: SIGRAPH 2007 Courses on GPGPU. http://www.gpgpu.org/s2007/

Memory Architecture — key to good

performance

 Host memory

- Device < host memory

bandwidth is 4 GB/s peak
(PCl-express x16)

Global/local device memory

- High latency, not cached

- 80GB/s Eeak, 1.5 GB
(Quadro FX 5600)

Shared memory

- On-chip, low latency, very
high bandwidth, 16 KB

- Like a user-managed per-

multiprocessor cache Host ¢

Texture memory

- Read-only, high latency,
cached

Constant memory

Grid

Block (0, 0)

Thread (0, 0)

] e

Block (1, 0)

R

Thread (0, 0) Thread{1 u)

Thread (1, 0)

- Read-only, low latency,
cached, 64 KB

References: SIGRAPH 2007 Courses on GPGPU. http://www.gpgpu.org/s2007/

[1UGPU n%n.

Performance Strategies

e Maximize parallelism

° Parallelism in algorithm
> Concurrency of CPU and GPU

* Optimize access pattern

* Minimize CPU <> GPU data transfer
* Group data transfer

e Maximize use of shared memory

