Does access pattern affect latency!?

* This is the most important question.

* A benchmarking study done by Stanford
University
o Try different texture fetch
Cache — every fetch to the same texel

Sequential — every fetch increments address by |

Random — dependent lookup with random texture



Results

e Random is Bad, Coherent is Good
¢ Just like a CPU!
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Off-board bandwidth

* How fast can we get data on the board
(download)!?

* How fast can we get data off the board
(readback)?

o PCl express has a theoretical limit of
4GB/s

° In practice, GL is about | GB/s, CUDA can
do over 2.7GB/s (about 85%).

» GPU <> HOST = SLOW



Programming on the GPU

* Old Model: use graphics API such as
OpenGL and DirectX

> Use programming tricks
> Hard to do

> Relatively slow

* New Model: Nvidia CUDA

> Extension to C
o Special Compiler - host code and kernal code

° (Huge) speed up



8800GTX Architecture
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References: SIGRAPH 2007 Courses on GPGPU. http://www.gpgpu.org/s2007/



Memory Architecture — key to good

performance

 Host memory

- Device < host memory

bandwidth is 4 GB/s peak
(PCl-express x16)

Global/local device memory

- High latency, not cached

- 80GB/s Eeak, 1.5 GB
(Quadro FX 5600)

Shared memory

- On-chip, low latency, very
high bandwidth, 16 KB

- Like a user-managed per-

multiprocessor cache Host ¢

Texture memory

- Read-only, high latency,
cached

Constant memory

Grid
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- Read-only, low latency,
cached, 64 KB

References: SIGRAPH 2007 Courses on GPGPU. http://www.gpgpu.org/s2007/
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Performance Strategies

e Maximize parallelism

° Parallelism in algorithm
> Concurrency of CPU and GPU

* Optimize access pattern

* Minimize CPU <> GPU data transfer
* Group data transfer

e Maximize use of shared memory



