

Project Website

• http://whtresearch.sourceforge.net

🏉 C5680 - WHT on GPU - About - Windows Internet Explorer		
🚱 🕞 👻 🖻 http://whtresearch.sourceforge.net/	🗸 🔶 🗙 🛛 Google	۰ ۾
🔆 🎸 🌈 CS680 - WHT on GPU - About	💁 • 🖑 🖬 - 🖶 • 📴	<u>P</u> age ▼ () T <u>o</u> ols ▼ [≫]
CS680 Project Website - WHT with GPU		
Last Published: 11/02/2007		
•WHT with GPU About Presentation Resources FAQ Our team is working to add support for GPU into the WHT package. The graphics card we are working for is NVIDIA 8800GTX. • Project Information • Vinidia 8800 GTX Specs • Widia 00DA GPCPU • Widia 00DA GPCPU • Dull Dysee • Dull Dysee		
		© 2007
Done	Internet Protected Mode: On	🔍 100% 🔻 🖉

CPU and GPU

Figure 1-2. The GPU Devotes More Transistors to Data Processing

Nvidia 8800 GTX Hardware Architecture

- SIMD Multiprocessor Architecture
 - At any given clock cycle, each processor of the multiprocessor executes the

same

instruction but operates on different data.

On-chip memory

- Each Multiprocessor has on-chip memory of four types:
 - a set of local 32-bit registers per processor
 - a parallel data cache or shared memory that is shared by all the processors within a multiprocessor
 - read only constant cache and texture cache
- Execution Model
 - a grid of blocks is executed by executing one or more blocks on each multiprocessor Each block is split into groups call warps, each warp is executed on one multiprocessor.

Technical Specs

- Number of Multiprocessors: 16
- Max number of thread per block: 512
- Warp Size: 32 (32 processors)
- number of registers per multiprocessor: 8192
- Amount of shared memory available per multiprocessor: I6KB organized into I6 banks (Blocksize IKB).

- The cache working set for one-dimensional textures is 8 KB per multiprocessor;
- The maximum number of blocks that can run concurrently on a multiprocessor is 8
- The maximum number of warps that can run concurrently on a multiprocessor is 24;
- The maximum number of threads that can run concurrently on a multiprocessor is 768;
- For a texture reference bound to a onedimensional CUDA array, the maximum width is 213;
- For a texture reference bound to a twodimensional CUDA array, the maximum width is 216 and the maximum height is 215;
- For a texture reference bound to linear memory, the maximum width is 227; The limit on kernel size is 2 million of native instructions;
- Each multiprocessor is composed of eight processors, so that a multiprocessor is able to process the 32 threads of a warp in four clock cycles.

Shared Memory Access Pattern

- No Conflicts
 - linear addressing with a stride of one 32bit word.
 - random permutation
 - Linear addressing with a stride of three 32bit words.

Shared Memory Access Pattern

- Bank Conflicts
 - Linear addressing with a stride of two 32-bit words causes 2-way bank conflicts
 - Linear addressing with a stride of eight 32-bit words causes 8-way bank conflicts

CUDA Example Program

DEMO