
Exploring Graphics Processor Performance for General Purpose Applications

Pedro Trancoso and Maria Charalambous
Department of Computer Science, University of Cyprus

75 Kallipoleos Str., P.O.Box. 20537, CY-1678 Nicosia, Cyprus
{pedro,cs00cm}@cs.ucy.ac.cy

Abstract

Graphics processors are designed to perform many
floating-point operations per second. Consequently, they
are an attractive architecture for high-performance com-
puting at a low cost. Nevertheless, it is still not very clear
how to exploit all their potential for general-purpose appli-
cations.

In this work we present a comprehensive study of the per-
formance of an application executing on the GPU. In addi-
tion, we analyze the possibility of using the graphics card
to extend the life-time of a computer system.

In our experiments we compare the execution on a mid-
class GPU (NVIDIA GeForce FX 5700LE) with a high-end
CPU (Pentium 4 3.2GHz). The results show that to achieve
high speedup with the GPU you need to: (1) format the vec-
tors into two-dimensional arrays; (2) process large data ar-
rays; and (3) perform a considerable amount of operations
per data element. Finally, we study the performance when
upgrading a low-end system by simply adding a GPU. This
solution is cheaper, results in smaller power consumption
and achieves higher speedup (8.1x versus 1.3x) than a full
upgrade to a new high-end system.

1. Introduction

The demands from the game applications market have
been driving the development of better and faster architec-
tures. The addition of SIMD instruction extensions to the
traditional Instruction Set Architecture (ISA) was done to
support the demands of the multimedia and gaming appli-
cations. The obvious development though, can be observed
in the Graphics Cards and more specifically in the Graph-
ics Processing Units (GPU). The GPUs are the responsible
entities for drawing the fast moving images that we observe
on the computer screens. To achieve those real-time realis-
tic animations, the GPUs must perform many floating-point
operations per second. As such, and given that the work
performed by the GPUs is dedicated to these applications,

the GPUs are forced to offer many more computational re-
sources than the general purpose processors (CPU). Given
the characteristics of these applications, performance can
easily be achieved from the use of vector units, i.e. using the
SIMD programming model. In some way, these GPUs have
similar characteristics with many original supercomputers
(e.g. Cray supercomputers). However, the first GPU models
were only capable of handling a restricted number of hard-
wired graphics operations. A determinant factor in the de-
velopment of the latest GPU models is that now they are
programmable, offering the capability of executing user’s
code. As such, users, and game writers in particular, may
write their own graphics operations. In addition, the pro-
grammability has opened the power of the GPU for other
non-graphics applications. This has lead to the rising inter-
est in a new research field known as General Purpose com-
putation on Graphics Processing Units or GPGPU [6].

Several general-purpose applications have been mapped
to the GPU. Examples of such applications include: dense
matrix multiply [9], linear algebra operations [8], sparse
matrix solvers for conjugate gradient and multigrid [1], and
database operations [5].

Although different manufacturers offer different mod-
els of GPUs, the interface exported for programming them
is standard and supported by the graphics card drivers.
Currently the two major standards for the GPU interface
are OpenGL [14] and DirectX [12]. Because these inter-
faces were written for programming graphics operations,
they are not trivial to be used by general-purpose appli-
cations. Consequently there are some efforts into making
environments and tools that make the GPU programming
easier for general-purpose applications. One such environ-
ment is BrookGPU [2]. BrookGPU makes some extensions
to ANSI C in order to support the execution of general-
purpose applications on the GPU, making it relatively easy
to port an application. The main issue, though, is not the
porting but exploiting the GPU’s features.

The contributions of the work presented in this paper are
twofold. First, this work presents a comprehensive study of
the performance of a simple application executing on the

GPU. Several parameters are analyzed such as the “shape”
and type of the data passed to the functions executing on the
GPU, the input data size, and the number of operations per
data element. Second, this work analyzes the extension of
the life-time of a computer system by adding graphics cards
as opposed to upgrading the whole system.

We executed several experiments using a simple appli-
cation in order to understand the correlation between the
changes made and the results obtained. We compared the
execution on a mid-class GPU (NVIDIA FX 5700LE) with
a high-end CPU (Pentium 4 3.2GHz). The results showed
that to achieve high speedup with the GPU it is necessary
to: (1) format the vectors into two-dimensional arrays; (2)
process large data arrays; and (3) perform a considerable
amount of simple operations per data element. The positive
result was that excluding the issue with the dimension of
the input data, the GPU execution always shows a speedup
larger than one. The most interesting result is that when con-
sidering to upgrade a system (Pentium III 733MHz), simply
adding a GPU (5700LE) to the existing system is a solution
that is less costly, results in smaller power consumption and
achieves higher speedup (8.1x versus 1.3x) than a full up-
grade to a new high-end system (Pentium 4 3.2GHz).

This paper is organized as follows: Section 2 presents
the GPU architecture along with its programming environ-
ment. Section 3 shows the experimental setup and Section 4
presents the experiments and results obtained. Section 5 dis-
cusses the limitations of the use of the GPU for general pur-
pose applications. Finally the conclusions are presented in
Section 6.

2. Graphics Processing Unit

2.1. Architecture

The GPU is an interesting architecture as it offers a large
degree of parallelism at a relatively low cost. Its operations
are similar to the well known vector processing model. This
model is also known from Flynn’s taxonomy [4] as Single
Instruction, Multiple Data or SIMD. As such, it is natural
that the GPU will be able to perform well on many of the
applications that in the past were forced to be executed on
vector supercomputers.

Another characteristic of the simple parallel architecture
of the GPU is that it allows for its performance to grow at
a rate faster than the well known Moore’s law. In fact, the
GPU’s performance has been increasing at a rate of 2.5 to
3.0x a year as opposed to 1.4x for the CPU.

The general architecture of the GPU is depicted in Fig-
ure 1. Notice that the GPU includes two different types of
processing units: vertex and pixel (or fragment) processors.
This terminology comes from the graphics operations that
each one is responsible for. For example, the vertex proces-

64bit 64bit 64bit 64bit

Input from CPU

Host interface

Vertex processing

Triangle setup

Pixel processing

Memory Interface

Figure 1. GPU architecture.

sor performs mathematical operations that transform a ver-
tex into a screen position. This result is then pipelined to
the pixel or fragment processor, which performs the textur-
ing operations.

2.2. Programming Environment

As mentioned before, programming the GPU in a high-
level language is a recent development. The first high-
level language programming environments were developed
for graphics applications in mind. Such examples are Cg
from NVIDIA [10] and OpenGL Shading Language [7]. Al-
though helpful, they make the job of mapping a general
purpose application a considerable task. Therefore, some
research teams are working on developing high-level lan-
guage programming environments for general purpose pro-
gramming. One such environment is BrookGPU [2] from
Stanford University.

BrookGPU is an extension to the standard ANSI C and is
designed to facilitate the porting of general purpose appli-
cations to the GPU. The main differences from the standard
C language are the introduction of the concept of stream
variables, and kernel and reduction functions. The program-
ming model offered by BrookGPU for the functions to be
executed on the GPU is a streaming model. In this model a
function processes streams, i.e. sequences of data, but oper-
ates on a single element at a time.

Using BrookGPU, a function that is executed on the
GPU can be of two types: kernel and reduction. The for-
mer is a general function that accepts multiple input and
output parameters which may be of type stream or not. The
latter is a function that takes multiple stream parameters but
returns a single value. This is used to execute the known
reduction operations such as a sum of all the values in a
stream.

Finally, BrookGPU has the advantage that it is only nec-
essary to write the code once and its runtime takes care of
selecting the correct implementation. For example, the same
code can execute either on the CPU, or the GPU, using the
OpenGL or the DirectX interface. In addition, it also pro-
vides an indirection layer such that the user does not need
to be aware if the card has an NVIDIA or an ATI chip, for
example.

3. Experimental Setup

For the experiments presented in this paper we used
one graphics card and two computer setups. The graphics
card used was an NVIDIA GeForce FX 5700 LE [11]. This
card has an NV36 graphics processor clocked at 250MHz,
128MB DDR video memory clocked at 200MHz and the
data transfers with the PC are done through the AGP in-
terface. The NV36 processor includes 3 vertex and 4 pixel
pipelines [15].

As for the computer systems we used two different se-
tups: low-end, an Intel Pentium III 733MHz based sys-
tem with 512MB RAM; and high-end, an Intel Pentium 4
3.2GHz HT based system with 1GB RAM. Unless men-
tioned, the experimental results presented were collected on
the high-end system.

The application used to test the potential of the graphics
processor is a simple function that takes two input arrays of
data or streams and operates on them with a simple addi-
tion operation. Although simple, the operations in this ap-
plication are common in most scientific workloads. Its char-
acteristics make it easier to reveal the impact on the per-
formance produced by certain code or data optimizations.
This application is provided with the BrookGPU [2] envi-
ronment and is called accumulate. The main routine of ac-
cumulate that is executed on the GPU is presented in Fig-
ure 2. The complete accumulate code can be found together
with the BrookGPU distribution [3].

kernel void
sum(float a<>, float b<>, out float c<>)
{

c = a + b;
}

Figure 2. Main accumulate routine.

The environment used was BrookGPU version 0.3 [2]
as described in Section 2. For the experiments, BrookGPU
was compiled with the Microsoft Visual Studio C++ com-
piler using BrookGPU’s make release command, i.e. with
full code optimizations for both the low-end and high-end
setups.

The results reported are based on the system time mea-
surements, collected from the program execution, using the
processor’s hardware performance counters. The access to
the performance counters is achieved with the QueryPer-
formanceCounter library function. The time is measured in
three portions: the time to read the data into the card, the
time to execute the function, and the time to write the data
back to the system’s memory. Unless mentioned otherwise
the time reported accounts for the total time that it takes
to execute the function, excluding the variable initialization
phase.

Also, for every experiment we compare the execution
time of running the code on the regular CPU of the sys-
tem and on the GPU of the graphics card on the system.
We measure these two situations using the same code as
the BrookGPU runtime allows the user to decide where
the code should be executed depending on the value of
an environment variable (BRT RUNTIME). If the variable
BRT RUNTIME is set to cpu, the code will be executed on
the system’s CPU while if it is set to nv30gl it will be exe-
cuted on the card’s GPU.

4. Experimental Results

4.1. Formatting the data for the GPU

In a general-purpose vector function the data is usually
one-dimensional. In this experiment we test what is the
impact on performance of passing the data as-is, i.e. one-
dimensional, and what happens if we format the data to be
passed as a two-dimensional array.

The chart in Figure 3 shows the speedup of the GPU ex-
ecution comparing to the baseline CPU execution for two
baseline one-dimensional cases: stream size of 100 and
2000 floating point (fp) elements.

0.9

1.0

0.4

1.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

<100> <10,10> <2000> <200,10>

data streams

sp
ee

du
p

(c
pu

-1
d/

gp
u)

Figure 3. GPU speedup for 1D and 2D input data
streams.

In Figure 3 it is possible to observe that the speedup is
largely affected by the “shape” of the data. As shown, the
speedup for the one-dimensional cases is always smaller
than one. In addition, this problem increases as the input
data increases (speedup is 0.9 for 100, while only 0.4 for
2000 fp elements). This is more obvious when we observe
that for the 100 fp elements the increase from 1D to 2D
is 11%, while for the 2000 fp element case this increase is
150%. As a consequence, we are lead to conclude that in
order to exploit the performance of the GPU we need to re-
format the input data to be two-dimensional.

The next question is whether for a certain fixed data size
the size of the second dimension plays any role in the per-
formance. To answer this question we executed an experi-
ment with a large input data size of 20000 fp elements. The
results of the GPU speedup are presented in Figure 4.

1.95

2.00

2.05

2.10

2.15

2.20

10 100 1000 10000

second dimention size (stream <2000/n,10n>)

sp
ee

du
p

(c
pu

<2
00

0,
10

>/
gp

u)

Figure 4. GPU speedup for varying second di-
mension size of 2D input data streams.

The results from Figure 4 show that up to a certain point,
increasing the second dimension results in higher speedup.
Beyond that point, increasing the second dimension re-
sults in decrease of the speedup. Notice that although these
changes are quite small (9%) they are an indication that the
highest speedup is achieved when the data is closer to a
“square shape”. This is mostly due to the fact that the GPUs
were designed to operate on images (two-dimensional) and
not on vectors. Notice that, in most of the other experiments,
the upper limit data set size used is <2048,40> which is not
of “square” shape but uses fully the first dimension and ac-
cording to the results in Figure 4 is within 2% of the highest
performance.

4.2. Input Data Size

The next set of experiments addresses the question of
how the speedup depends on the input data size. Given that

there are data transfer overheads involved in the execution
of a piece of code on the GPU, GPU execution will not be
beneficial for all cases. As such, we are interested in learn-
ing what is the data size, for a simple application like the
accumulate, when it becomes beneficial to execute the code
on the GPU. Figure 5 presents the speedup of the GPU com-
pared to the CPU for different input data sizes and one- and
two-dimensional input data.

0.0

0.5

1.0

1.5

2.0

2.5

100 1000 10000 100000

data stream size [# float elements]

sp
ee

du
p

(c
pu

/g
pu

)

1D stream 2D stream

Figure 5. GPU speedup for varying input data size
for 1D and 2D input data streams.

From Figure 5 it is possible to observe that, on the one
hand, when the data is one-dimensional the speedup is al-
ways lower than one and it actually decreases as the data
size increases. On the other hand, when the data is two-
dimensional the speedup is always larger than one and it
increases linearly as the data size increases (notice that the
scale of the horizontal axis is logarithmic). Consequently,
for the accumulate example, in order to achieve speedup on
the GPU we need the data to be two-dimensional and the
larger the data set, the larger the speedup that will be ob-
served. For data streams of 81920 (<2048,40>) fp elements
the GPU achieves a speedup of 2.0.

4.3. Number of Operations

While the previous section discussed the speedup de-
pending on the data intensity of the application, this sec-
tion analyzes the speedup for different degrees of computa-
tion intensity of the application.

In order to perform this experiment we have changed the
sum function shown in Figure 2 to have only a single input
vector. The operation performed is a multiple addition of the
single input. The number of times the element is added de-
pends on the number of operations we want to test. There-
fore, the function code for testing 3 operations is the one in
Figure 6.

kernel void
sum(float a<>, out float b<>)
{

b = a + a + a + a;
}

Figure 6. Main accumulate routine.

In Figure 7 we present the speedup for the GPU com-
pared to the CPU execution as we change the number of
operations, for three different fixed size input data streams:
100 fp elements (<10,10>), 2000 fp elements (<200,10>),
and 20000 fp elements (<2000,10>).

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

1 10 100

number of operations

sp
ee

du
p

(c
pu

/g
pu

)

<10,10> <200,10> <2000,10>

Figure 7. GPU speedup for varying number of op-
erations with constant input data streams.

Figure 7 shows that, similarly to the previous case of
the data set size, as the number of operations increases, the
speedup increases. In this case, for the largest input data set
of 20000 fp elements, for 31 operations we can observe a
speedup of 4.6.

Although the previous results are an indication of what
happens when the number of operations increases for a fixed
number of input parameters, in real applications as the num-
ber of operations increases so do the number of parame-
ters in the function. As such we designed a different exper-
iment to study the impact of increasing the number of op-
erations on the speedup. In this experiment we changed the
sum function to have two (c = a+b), four (e = a+b+c+d),
and eight (i = a + b + c + d + e + f + g + h) parame-
ters. Then we increase the number of operations by repli-
cating the sum operation n times, which we call the effort.
Therefore, the code for the sum for four parameters and ef-
fort two is the one presented in Figure 8.

This experiment is again performed for the three fixed
data set sizes as presented in the previous experiment. The
results of the speedup for the GPU compared to the CPU

kernel void
sum(float a<>, float b<>, float c<>,

float d<>, out float e<>)
{

e = a + b + c + d;
e = a + b + c + d;

}

Figure 8. Main accumulate routine for four para-
meters and effort two.

are depicted in Figure 9. In this Figure we can observe
three different sub-charts, each one corresponding to a dif-
ferent number of sum operations: two (c=), four (e=), and
eight(i=). On the x-axis we represent the different effort val-
ues ranging from 1 to 16. Each sub-chart includes three
curves, each one representing a different data set size.

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

1 2 4 16 1 2 4 16 1 2 4 16

c=a+b e=a+…+d i=a+…+h

number of operations

sp
ee

du
p

(c
pu

/g
pu

)

<10,10> <200,10> <2000,10>

Figure 9. GPU speedup for varying number of op-
erations and data parameters with constant input
data streams.

From Figure 9 we observe again that the larger the data
set the larger the speedup. Also, as in the previous experi-
ment, an increase in the number of operations, in this case
expressed by larger effort value, also shows an increase in
the speedup. Finally, as we increase the number of para-
meters it is again possible to observe an increase in the
speedup. Ultimately, for the case of the data set size of
20000 fp elements, eight parameters and effort of 16, the
GPU achieves a speedup of 12.6 over the CPU. This is an
impressive performance benefit of the GPU over the CPU.
Notice though that in this extreme case the sum function
has a total of 160000 fp elements as input and performs
2240000 fp additions. This results in a ratio of 14 oper-
ations per data element. This ratio may not exist, without
any changes, in most applications. As such, we will observe

speedup values that are less than 12.6. Nevertheless this re-
sult is a strong motivation for trying to rearrange the code
in order to increase the number of operations per data el-
ement so that we exploit the performance benefits of the
GPU.

4.4. Data Types

Given the characteristics of the graphics applications, the
GPU programming model offers some extra data types that
are interesting to analyze. These data types are data struc-
tures with multiple float elements that are used in graph-
ics applications to represent, for example, the position of a
point in a multi-dimensional space. As such, the program-
ming model offers the floatN types where N is a number be-
tween 2 and 4. For example, a float4 variable has four fields
x, y, z, and w.

In our experiments we compared an input stream com-
posed of regular float elements with an input stream com-
posed of float2 and float4 elements. In order to study only
the impact of the data type change, we maintain the total
number of data elements constant, i.e. we compare a stream
of <2048,40> float elements with a stream of <2048,20>
float2 elements and one of <2048,10> float4 elements. The
code for the sum function changes slightly again as now in-
stead of the simple c = a + b operation, we have to per-
form the operation on all components of the new type. The
code for the sum function using the float2 data type is the
one found in Figure 10.

kernel void
sum(float2 a<>, float2 b<>, out float2 c<>)
{

c.x = a.x + b.x;
c.y = a.y + b.y;

}

Figure 10. Main accumulate routine for float2 data
type.

The experimental results comparing the speedup ob-
tained for the GPU comparing to the baseline CPU (with
float data type), for float, float2, and float4 are depicted in
Figure 11.

The results in Figure 11 show an interesting behavior of
the floatN data type. While using the original float type re-
sults in a steady speedup increase as the data size increases,
the float2 results show very bad performance. The float4
are more encouraging as the speedup is substantially larger
than the one obtained with the original float type. Neverthe-
less, as the input data set increases, the speedup decreases

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

1000 10000 100000

data size

sp
ee

du
p

(f
lo

at
-c

pu
/fl

oa
tN

-g
pu

)

float
float2
float4

Figure 11. GPU speedup for varying the data type
of the input data streams.

and almost reaches the level of the original float type. The
reason for this behavior seems to be related to the transfer
of the float4 results to the system’s memory. The benefit of
float4 in comparison with float is justified from a more effi-
cient result transfer for the smaller data streams. A detailed
analysis of the execution time shows that the transfer of the
results accounts for 25% for float4 and the 2000 data ele-
ment streams. For float the same transfer accounts for 33%
of the total execution time.

4.5. Exploring Function Implementation Options

In this section we analyze, for the original code and fixed
input data size, different implementation options. We may
consider three different types of implementation of the same
function using different techniques.

In the first technique, called split, we split the input
streams into smaller ones. Considering that originally we
have two input streams of size n, with split2 we will have
four input streams of size n/2. The rationale is to increase
the number of operations performed within the function that
executes on the GPU.

In the second technique, called call, the input streams are
again split but instead of passing the data as extra parame-
ters, the function will be called more times. In the same ex-
ample as above, the call2 technique would split the two in-
put streams of size n into four streams of size n/s, but the
sum function would be called with the smaller streams. The
difference is that in order to complete the operations, it re-
quires for the function sum to be called a second time with
the second portion of the data streams.

Finally, the third technique is the one where the data type
is changed from float to floatN as described in the previous
section.

The results from these experiments showing the speedup
of the GPU over the CPU are depicted in Figure 12. Notice

that the call technique is only used for the <2000,10> and
<2048,40> data streams.

2.02.01.8
2.2

5.7

1.21.21.1

0.2

3.3

2.01.91.8

1.1

0.1

4.6

2.01.91.81.8

0.0

3.1

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

or
ig

in
al

sp
lit

2
sp

lit
4

flo
at

2
flo

at
4

or
ig

in
al

sp
lit

2
sp

lit
4

flo
at

2
flo

at
4

or
ig

in
al

sp
lit

2
sp

lit
4

ca
ll4

flo
at

2
flo

at
4

or
ig

in
al

sp
lit

2
sp

lit
4

ca
ll4

flo
at

2
flo

at
4

<10,10> <200,10> <2000,10> <2048,40>

sp
ee

du
p

(c
pu

-o
rig

in
al

/g
pu

)

Figure 12. GPU speedup for function implemen-
tation options.

These results may be easily summarized as all different
implementation options other than float4 result in a worse
speedup than the original one. As such, only the technique
of changing the input and output data type for float4 seems
to be an alternative to the original implementation.

4.6. Upgrading Options

In this last section we analyze different upgrading op-
tions and their impact on the speedup. For this experiment
our baseline system is the previously referred to as low-
end system, a system equipped with an Intel Pentium III
733MHz and 512MB RAM (P3). The first upgrade we con-
sider is to add the graphics card to the system (P3+GPU).
An alternative upgrade is the one where the system is
changed for a high-end system, one equipped with an In-
tel Pentium 4 3.2GHz and 1GB RAM (P4). The last up-
grade is the ultimate where we consider the high-end sys-
tem together with the graphics card (P4+GPU).

The different systems were tested with three sizes of
input data stream: 100 (<10,10>), 2000 (<200,10>) and
20000 (<2000,10>) fp elements. The speedup results for
these different system configurations, compared to the base-
line P3 system, are depicted in Figure 13.

From Figure 13 it is relevant to notice that only for the
smaller data set size the P4 configuration achieves a bet-
ter performance than the P3+GPU. This means that for
medium to large data set sizes the option of upgrading the
system by only adding a graphics card of medium perfor-
mance results in higher overall performance than upgrading
the whole system to a high-end one. This result is obvious
for the larger data set size tested as the P4 system achieves

0.8
1.8

8.1

1.1 1.2 1.31.3

2.9

13.4

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

<10,10> <200,10> <2000,10>

stream size

sp
ee

du
p

(p
3-

cp
u/

x)

P3+GPU P4 P4+GPU

Figure 13. Speedup for different system configu-
rations.

only a modest 1.3 speedup in comparison with the original
P3 system. In contrast, for the same data set size, adding the
GPU to the P3 system results in a speedup of 8.1.

These results are even more impressive if the prices of
the upgrades are considered. From PriceWatch [13] it is pos-
sible to find that the NVIDIA 5700LE card costs approxi-
mately US$75 and the Pentium 4 US$200. This means that
for the large data set the P3+GPU achieves a speedup that
is larger by a factor of 6x at a cost that is only a little more
than one third of the P4 upgrade.

Furthermore, given today’s concern about power-
consumption, it is relevant to notice that while the
NVIDIA chip consumes approximately 24W [16], the Pen-
tium 4 3.2GHz consumes approximately 5.5x more power,
as it consumes more than 130W.

Overall, the experimental results have shown that up-
grading a modest system with a graphics card will result
in a larger speedup than upgrading to a high-end system.
This can effectively be used to extend the life-time of a sys-
tem. In addition, the graphics card is less costly and con-
sumes less power compared to the high-end CPU. If all fac-
tors are considered then the effective speedup achieved is
overwhelmingly larger for the GPU comparing to a high-
end CPU.

5. Graphics Processor Limitations

As a result of our experiments we observed some limita-
tions of the GPU for general-purpose applications.

First, the GPU was designed to process images for the
screen. As such, it may handle as many pixels as the maxi-
mum resolution of the image it can process. In reality, this
means that the largest size for a dimension of a data stream
is 2048 floating point elements. Also, as it is known, the
size of the Video RAM limits the maximum resolution. For
general-purpose programming this means that the number

of elements to be processed by a streaming operation is lim-
ited to the size of the Video RAM.

Another limitation regards the number of input parame-
ters that can be passed to a GPU function. This number is
limited to eight as currently to produce a realistic image it
makes no sense to have more than eight pixel characteris-
tics (e.g. coloring, smoothing, lighting, etc.).

One last limitation is the fact that the normal operation
of the graphics card is to read image-related data from the
main memory, process this data to produce an image, and
output this image to the screen via the video output of the
card. In regular graphics operations there is no need to trans-
fer the results back to the main memory of the system.
Nevertheless, this results in a serious limitation to general-
purpose programming as the result must be stored in main
memory. As such, while the GPU execution time is quite
small, for large result streams the wait time for the trans-
fer may be considerable. In our experiment we observed
in some situations more than 50% of result transfer time.
This limitation, though, is currently being lifted by the lat-
est card models that connect to the PCI-Express ports and
offer a higher-bandwidth for the return of data.

6. Conclusions

This work focused on how to exploit the GPU’s perfor-
mance for general purpose applications.

The contributions of the work presented in this paper are
twofold. First, this work presents a comprehensive study of
the performance of a simple application executing on the
GPU. Several parameters are analyzed such as the “shape”
and type of the data passed to the functions executing on the
GPU, the input data size, and the number of operations per
data element. Second, this work analyzes the extension of
the life-time of a computer system by adding graphics cards
as opposed to upgrading the whole system.

In our experiments we compared the execution on a mid-
class GPU (NVIDIA GeForce FX 5700LE) with a high-
end CPU (Pentium 4 3.2GHz). The results showed that to
achieve high speedup with the GPU you need to: (1) format
the vectors into two-dimensional arrays; (2) process large
data arrays; and (3) perform a considerable amount of oper-
ations per data element. Finally, we studied the performance
when upgrading a low-end system by simply adding a GPU.
This solution is cheaper, results in smaller power consump-
tion and achieves higher speedup (8.1x versus 1.3x) than a
full upgrade to a new high-end system.

We are currently extending this work by performing the
same analysis on different GPU models. In addition we are
using the results presented in this work in order to build a
model that determines at compile time if the code should be
scheduled on the CPU or the GPU.

Acknowledgments

We would like to thank Elena Hadjikyriacou-Trancoso
and Kyriakos Stavrou for the valuable reviewing effort.
Also, we would like to thank the anonymous reviewers for
their input on the work.

References

[1] J. Bolz, I. Farmer, E. Grinspun, and P. Schrooder. Sparse ma-
trix solvers on the GPU: conjugate gradients and multigrid.
ACM Transactions on Graphics, 22(3):917–924, 2003.

[2] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian,
M. Houston, and P. Hanrahan. Brook for GPUs: Stream
Computing on Graphics Hardware. ACM Transactions on
Graphics, 23(3):777–786, 2004.

[3] I. Buck, T. Foley, D. Horn, J. Sugerman, P. Han-
rahan, M. Houston, and K. Fatahalian. BrookGPU.
http://graphics.stanford.edu/projects/brookgpu/, 2005.

[4] M. Flynn. Very high-speed computing systems. Proceedings
of the IEEE, 54(12):1901–1909, 1966.

[5] N. Govindaraju, B. Lloyd, W. Wang, M. Lin, and
D. Manocha. Fast Computation of Database Operations us-
ing Graphics Processors. In SIGMOD ’04: Proceedings of
the 2004 ACM SIGMOD international conference on Man-
agement of data, pages 215–226. ACM Press, 2004.

[6] GPGPU. General-Purpose Computation Using Graphics
Hardware. http://www.gpgpu.org/, 2005.

[7] J. Kessenich, D. Baldwin, and R. Rost. The OpenGL Shad-
ing Language, April 2004.

[8] J. Kruger and R. Westermann. Linear algebra operators for
GPU implementation of numerical algorithms. ACM Trans-
actions on Graphics, 22(3):908–916, 2003.

[9] E. Larsen and D. McAllister. Fast matrix multiplies us-
ing graphics hardware. In Supercomputing ’01: Proceed-
ings of the 2001 ACM/IEEE conference on Supercomputing
(CDROM), pages 55–55. ACM Press, 2001.

[10] W. Mark, R. Glanville, K. Akeley, and M. Kilgard. Cg:
a system for programming graphics hardware in a C-like
language. ACM Transactions on Graphics, 22(3):896–907,
2003.

[11] NVIDIA. NVIDIA GeForce FX: Performance.
http://www.nvidia.com/page/fx 5700.html, 2005.

[12] C. Peeper. DirectX High Level Shading Language. Microsoft
Meltdown UK Presentation, Microsoft Corporation, 2002.

[13] PriceWatch. Price Comparison Search Engine.
http://www.pricewatch.com, 2005.

[14] M. Segal and K. Akeley. The OpenGL Graphics System: A
Specification (Version 2.0), October 2004.

[15] TechPowerUp. GPU Database.
http://www.techpowerup.com/gpudb/, 2005.

[16] T. Tscheblockov. Power Consumption
of Contemporary Graphics Accelerators.
http://www.xbitlabs.com/articles/video/display/ati-vs-
nv-power.html, 2004.

